A continuous wood-concrete-composite system
Bathon, Leander A.1, Graf, Markus2

ABSTRACT

This paper introduces a continuous wood-concrete-composite system (wcc-system) which contains a steel mesh connecting wooden beams with a concrete slab. The shear connector acts as a rigid but ductile moderator between the materials wood and concrete. The system was tested in both shear and bending conditions to allow a better understanding on the structural behaviour under ultimate loading conditions. In order to allow a prediction of the non-linear behaviour of the specimens a mechanical model was developed. The comparison between actual test and the mechanical model shows a good correlation and puts trust in the simulation of the innovation. The advantages of this system compared to contemporary wcc-system solutions lay in improved strength, stiffness and manufacturing procedures. Its application potential can be found in floor, wall and roof systems of private and commercial buildings as well as in bridge structures.

INTRODUCTION

This paper introduces a continuous wood-concrete-composite system (wcc-system) which contains a steel mesh connecting wooden beams with a concrete slab. The shear connector acts as a rigid but ductile moderator between the materials wood and concrete. The wooden beams of the composite system obtain tensile stresses and the concrete slab compression stresses under bending conditions. The advantages of this system compared to contemporary wcc-system solutions lay in improved strength, stiffness and manufacturing procedures. Its application potential can be found in floor, wall and roof systems of private and commercial buildings as well as in bridge structures.

This paper consists of both shear and bending tests results which were conducted at the Material Testing Laboratories MPA Wiesbaden which is located on the campus of the FH Wiesbaden – University of Applied Sciences. The test results then are compared to a mechanical model which was developed in Wiesbaden as well.

The structural elements of the wood-concrete-composite system are shown by the following figure. The continuous shear connector - in form of a steel mesh - is inserted into a continuous slot within the wooden beam and connected by adhesive action. The continuous slot in the wooden beam is manufactured through a common circular sew in carpentry. The adhesive used is fire resistant up to approximately 200° C (392° F) and cures within 30 minutes. The shear connector acts as a support of the reinforcement and is fixed with the hardened concrete.

1 Professor, Dept. of Civil Engineering, FH Wiesbaden University of Applied Sciences, Wiesbaden, Germany
2 Grad. Student, Dept. of Civil Eng., FH Wiesbaden University of Applied Sciences, Wiesbaden, Germany
The degree of the composite action between the wooden beam and the concrete slab consists on the stiffness of the shear connector type. The following figure shows various degrees of composite action. For instance a few nails between wood and concrete could only be described as a soft composite action under bending loading. However a glue line between wood and concrete would create a stiff composite action and would be comparable to the glue lam beams which are used now more than 100 years in timber structures all over the world. The composite system introduced in this paper claims a rigid but ductile connection between the materials wood and concrete and therefore allows a non-linear performance.
A closer evaluation and test-results of the wcc-system will be shown on the following pages. They consist of shear tests as well as bending tests.

TESTING

Approximately 60 shear tests and two full scale bending tests were conducted to describe the performance of the system elastically and inelastically.

Shear tests

The specimens were 400 mm (16 inches) long. The wooden cross section was 100 by 140 mm. The concrete cross section was 400 by 80 mm. The test set up can be seen in the following figure. The steel mesh reached 40 mm into the wooden and 40 mm into the concrete part of the composite system.

The specimens were loaded statically through the concrete slab. The ultimate failure load was in the average of approximately 90,000 N with a displacement in the average of approximately 1.8 mm. The failure mechanism was primarily wooden shear failure. However, some specimens failed in the concrete plate and within the steel connection itself. The load-displacement performance of the wcc-system is shown in the following diagram.
Test set up: Performance:

Fig. 4 Test set up of the shear tests and the load-displacement diagram

Bending tests
The full scale bending test specimens were spanning 5,400 mm (approximately 17.7 feet). The width of the concrete slab was 600 mm (app. 28 in) and its height 70 mm (app. 3 in). The cross section of the wooden beam (glue lam beam) was 100 mm (app. 4 in) by 200 mm (app. 8 in) in height. The cross section of the connector was the same as used in the shear testing, 2 mm by 80 mm. The shear connectors were 1,000 mm (app. 40 in) long and continuously imbedded over the whole length of the test specimen.

The test set up was a 4 point bending test. The specimens were loaded statically through the concrete slab. The ultimate failure load was in the average approximately 73,000 N with a mid-span deflection in the average of approximately 42 mm. The failure mechanism was wooden failure only. The tensile stress due to the bending moment caused a failure of the bottom layer of the glue lam beam in the area of a knot or finger joint.

Fig. 5 Test set up of the 4 point bending specimens
The load-displacement performance of the wcc-system is shown in the following diagram. The figure shows almost a linear performance up to failure which supports the observation of a wooden fracture.

Fig. 6 Load-Displacement-Diagram

ANALYSIS

In order to evaluate the system performance analytically an adequate mechanical model had to be developed. The following figure shows this model in detail. The material concrete and wood are represented by a stick with representing material properties. Their position to each other (y-direction) is secured by an artificial coupling which does not influence the system performance. The shear connector was simulated by multiple frame-systems which were connected by springs. The spring stiffness was derived from the shear and bending tests and takes into account the linear and non-linear system performance. The analysis program was SOFISTIK out of Munich, Germany. The model allows the analysis of multiple systems with various loading conditions and provides the user with a number of applications which are not covered by various national design codes.
The comparison between testing and simulation was done for the shear and bending specimens. Both comparisons were conducted with the load-displacements curves which were introduced earlier in this paper.

Shear tests

The following figure shows the load-displacement performance of the continuous wcc-system between 0 and 2 mm deformation. It therefore focuses on the significant portion of the load-displacement diagram which was introduced in Fig. 4. The following Fig. 8 contains three curves.

The most upper curve (indicated by diamonds) is the arithmetical mean of all shear tests. Its edgy appearance is based on the irregular failure mechanism of some specimens. The curve next to it is the regression-curve (indicated by stars) of the test results and appears more natural than the arithmetical mean.

The third curve (indicated by triangles) is the load-deflection performance based on the mechanical model which was introduced in the previous paragraph.

Fig. 7
Mechanical Model for the non-linear analysis

COMPARISON

The comparison between testing and simulation was done for the shear and bending specimens. Both comparisons were conducted with the load-displacements curves which were introduced earlier in this paper.

Shear tests

The following figure shows the load-displacement performance of the continuous wcc-system between 0 and 2 mm deformation. It therefore focuses on the significant portion of the load-displacement diagram which was introduced in Fig. 4. The following Fig. 8 contains three curves.

The most upper curve (indicated by diamonds) is the arithmetical mean of all shear tests. Its edgy appearance is based on the irregular failure mechanism of some specimens. The curve next to it is the regression-curve (indicated by stars) of the test results and appears more natural than the arithmetical mean.

The third curve (indicated by triangles) is the load-deflection performance based on the mechanical model which was introduced in the previous paragraph.
Fig. 8 Comparison of arith. mean, regression curve and analytical simulation

The Fig. 8 shows a good fit between the regression-curve of the shear tests and the simulation-curve which is based on the non-linear behaviour of the mechanical model.

Bending tests
The following figure shows the load-deformation performance of the wcc-system for the bending test. Fig. 9 contains three lines named specimen, simulation soft, non linear and simulation stiff.

Fig. 9 Comparison of performance curves named specimen, simulation soft, non linear and simulation stiff
The most upper curve (indicated by triangles) shows the simulation curve in case of a stiff spring and therefore indicates a linear behaviour.

The curve next to it (indicated by the stars) shows the simulation curve in case of the actual stiffness (non-linear performance) which was obtain through the shear tests.

The third curve (indicated by squares) is the load-deflection performance obtained from the bending testing.

The Fig. 9 shows a good fit between the actual testing performance and the simulation-curve which is based on the non-linear behaviour of the mechanical model in correlation with the shear test results.

CONCLUSION

This paper introduces an innovative continuous wood-concrete-composite system which provides the user with high strength, stiffness and better manufacturing procedures. Furthermore it improves contemporary wood-concrete-composite solutions with a lower dynamic sensibility and an increase in acoustic performance.

The system was tested in both shear and bending conditions to allow a better understanding on the structural behaviour under ultimate loading conditions. The tests were conducted at the Material Testing Laboratories MPA Wiesbaden which is located on the campus of the FH Wiesbaden – University of Applied Sciences.

In order to allow a prediction of the non-linear behaviour of the specimens a mechanical model was developed. The comparison between actual test and the mechanical model shows a good correlation and puts trust in the simulation of the innovation.

Its application potential can be found in floor, wall and roof systems of private and commercial buildings as well as in bridge structures.

An ongoing research project in Wiesbaden considers climate changes and its influence on the wood-concrete-composite system. There will be additional results on this topic available within the next few months.

REFERENCES

